Новицкий Р. Э. - все статьи автора в журнале

    Информатизация здравоохранения
  • 2009 № 2 Использование технологий Microsoft в реализации Псковского проекта автоматизации системы здравоохранения регионального уровня

    Авторы: Гусев А. В. [31] Новицкий Р. Э. [4]

    Подробнее >

  • 2008 № 2 Обзор отечественных лабораторных информационных систем

    Авторы: Гусев А. В. [31] Новицкий Р. Э. [4]

    Подробнее >

  • Искусственный интеллект в здравоохранении
  • 2019 № 3 pdf Перспективы использования методов машинного обучения для предсказания сердечно-сосудистых заболеваний

    Заболеваемость и смертность от сердечно-сосудистых заболеваний (ССЗ) остается лидирующей на протяжении последних десятилетий в всем мире. Методы первичной профилактики, основанные на управлении факторами сердечно-сосудистого риска, являются наиболее эффективными для снижения бремени ССЗ. В профилактической медицине для управления рисками ССЗ используются рискометры – шкалы, полученные в результате длительных проспективных исследований. Но практическое применение разработанных шкал показало ограничения в точности прогнозирования. Машинное обучение дает возможность повысить точность прогнозирования сердечно-сосудистого риска за счет нелинейных взаимосвязей их более глубокой настройки между факторами риска и результатами заболеваний. Используя данные 2236 пациентов, нами была обучена модель по признакам, используемым в построении фрамингемской шкалы. Мы сравнили полученную модель и Фрамингемскую шкалу на точность прогнозасердечно-сосудистого события. Так, по ROC анализу для Фрамингемской шкалы показатели следующие: точность Accuracy: 70,0%, качество AUC: 0.59. При этом для модели, полученной с использованием машинного обучения, аналогичные показатели составили: Accuracy: 78,8%, AUC: 0.84. Таким образом, использование алгоритмов машинного обучения, включая алгоритмы глубокого обучения, могут значительно повысить точность прогнозирования сердечно-сосудистых рисков обученных моделей.

    Авторы: Гусев А. В. [31] Новицкий Р. Э. [4] Гаврилов Д. В. [3] Кузнецова Т. Ю. [2] Корсаков И. Н. [1] Серова Л. М. [1]

    Темы: здравоохранение14 искусственный интеллект8 машинное обучение7 медицина4 оценка рисков развития заболеваний1 сердечно-сосудистые заболевания4 факторы риска4

    Полная версия статьи в формате PDF
    3.7 МБ

    Подробнее >

  • Особое мнение
  • 2019 № 2 pdf Тренды и прогнозы развития медицинских информационных систем в России

    В настоящее время в России в целом сформирован рынок программных продуктов для медицины и здравоохранения. Требования государства к развитию информационных технологий для медицины постоянно растут. Начиная с 2019 года объем финансирования будет существенно увеличен. Главной статьей затрат в 2019–2024 гг. будет разработка, развитие и внедрение различных информационных систем для регионального здравоохранения, предусмотренных федеральной программой «Создание единого цифрового контура в сфере здравоохранения». В работе систематизированы наблюдения авторов и прогнозы о том, какие же главные тренды окажут наибольшее влияние на изменение рынка медицинских информационных систем (МИС), и к чему это приведет. Среди основных драйверов и прогнозов рынка: концентрация внимания врача и разработчиков МИС не вокруг ведения электронных документов, а вокруг различных аспектов здоровья и жизни пациента. В области управления взаимоотношениями с пациентами начнется внедрение в практику концепции Patient Relationship Management (PRM). К МИС будут расти требования в части оптимизации лечебно-диагностических процессов, поддержки клинических протоколов и непрерывного аудита качества оказания медицинской помощи. Продолжится развитие систем в сторону централизации, перехода на «облачную» модель работы, включая SaaS, а также импортозамещения. Число разработчиков будет постепенно сокращаться, что приведет к консолидации и укрупнению рынка. Будет расти спрос на интеграцию в МИС систем поддержки принятия врачебных решений, построенных с помощью машинного обучения. Все это в комплексе будет способствовать цифровой трансформации отрасли.

    Авторы: Гусев А. В. [31] Новицкий Р. Э. [4] Плисс М. А. [2] Левин М. Б. [1]

    Темы: искусственный интеллект8 машинное обучение7 медицинские информационные системы46 системы поддержки принятия врачебных решений4 цифровая трансформация1 электронная медицинская карта14

    Полная версия статьи в формате PDF
    3.5 МБ

    Подробнее >